
Machine vision technology for agricultural
applications�

Yud-Ren Chen �, Kuanglin Chao, Moon S. Kim

Instrumentation and Sensing Laboratory, Henry A. Wallace Beltsville Agricultural Research Center,

Agricultural Research Service, US Department of Agriculture, Building 303, 10300 Baltimore Ave, Beltsville,

MD 20705-2350, USA

Abstract

Current applications of machine vision in agriculture are briefly reviewed. The requirements

and recent developments of hardware and software for machine vision systems are discussed,

with emphases on multispectral and hyperspectral imaging for modern food inspection.

Examples of applications for detection of disease, defects, and contamination on poultry

carcasses and apples are also given. Future trends of machine vision technology applications

are discussed.
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1. Introduction

Many applications using machine vision technology have been developed in

agricultural sectors, such as land-based and aerial-based remote sensing for natural

resources assessments, precision farming, postharvest product quality and safety

detection, classification and sorting, and process automation. This is because

machine vision systems not only recognize size, shape, color, and texture of objects,

but also provide numerical attributes of the objects or scene being imaged.
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Besides imaging objects in the visible (VIS) color region, some machine vision

systems are also able to inspect these objects in light invisible to humans, such as

ultraviolet (UV), near-infrared (NIR), and infrared (IR). The information received

from objects in invisible light regions can be very useful in determining preharvest

plant maturity, disease, or stress states. It is very useful in determining plant and

vegetable variety, maturity, ripeness, and quality. It is also useful in detecting

postharvest quality and safety, such as defects, composition, functional properties,
diseases and contamination of plants, grains and nuts, vegetables and fruits, and

animal products.

Advantages of using imaging technology for sensing are that it can be fairly

accurate, nondestructive, and yields consistent results. Applications of machine

vision technology will improve industry’s productivity, thereby reducing costs and

making agricultural operations and processing safer for farmers and processing-line

workers. It will also help to provide better quality and safe foods to consumers.

Machine vision discussed here is limited to camera machine vision systems. It
holds great potential and benefits for the agricultural industry because of its

simplicity, low cost, rapid inspection rate, and broad range of applications. Machine

vision can also be performed using X-ray imaging and nuclear magnetic resonant

imaging (MRI). X-ray and MRI imaging are widely used in medical applications.

Even though they have potential for detecting diseases and defects in agricultural

products and food (Chen et al., 1989; Schatzki et al., 1997; Marks et al., 1998), their

applications in the agricultural sector are limited because of the high cost of

equipment investment and low operational speed.

2. Components of a machine vision system

Machine vision systems commonly used in agricultural applications acquire

reflectance, transmittance, or fluorescence images of the agricultural materials under

UV, VIS, or NIR illumination. A basic machine vision system consists of a camera, a

computer equipped with an image acquisition board, and a lighting system. Also,
computer software is required for transmitting electronic signals to computers,

acquiring images, and performing storage and processing of the images.

2.1. Lighting

The light range can be in the UV (200�/400 nm), VIS (400�/700 nm), or NIR (700�/

2500 nm). There are also applications in thermal imaging (above 2500 nm) for

agricultural products. When radiation from the lighting system illuminates an object,

it is transmitted through, reflected, or absorbed. These phenomena are referred to as
optical properties. The absorbed light can also be re-emitted (fluorescence), usually

at longer wavelengths. A number of compounds emit fluorescence in the VIS region

of the spectrum when excited with UV radiation. The optical properties and

fluorescence emission from the object are integrated functions of the angle and

wavelength of the incident light and chemical and physical composition of the object.
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The importance of proper illumination for a machine vision system cannot be

overstated. With a well-chosen lighting system, the incident light will present the

objects or scenes in the optimal way to be recognized or analyzed, thereby

eliminating many tedious image processing procedures that otherwise would be

needed. The lighting unit selection and its configuration in a machine vision system

depend on the application. At present, lighting hardware is readily available for

common machine vision applications in agriculture.

2.2. Frame grabber

Many monochrome frame-grabber boards are capable of taking RS-170 or CCIR

video inputs, while the color frame-grabber receives NTSC, PAL, or S-VHS input

signals. The features of a frame grabber required for machine vision applications

include image acquisition, camera control, and image data pre-processing. The frame

grabber can acquire either digital or analog images depending on the camera used.

For camera control, a minimum requirement is accurate A/D circuitry and precise

camera timing. Input signal conditioning, such as the ability to control gain and

offset, is important to minimize effects from camera variability or lighting
fluctuations. Also, some frame grabber boards are capable of preprocessing imaging

with functions such as ‘‘first-in-first-out’’ (FIFO) and ‘‘look-up table’’ (LUT).

A modern frame grabber board can communicate with the host CPU’s memory

via software driver at speeds of 80�/130 Mbytes/s (PCI-bus interface). This speed is

enough to meet the needs of many real-time operation for agricultural applications.

2.3. Image processing and analysis software

Digital image processing is performed with a computer to manipulate information

within an image to make it useful. Image processing in agricultural applications may
consist of three steps: (1) image enhancement, (2) image feature extraction, and (3)

image feature classification. Image enhancement is commonly applied to a digital

image to correct problems such as poor contrast or noise. Image enhancement

procedures such as morphological operations, filters, and pixel-to-pixel operations

are generally used to correct inconsistencies in the acquired images caused by

inadequate and/or nonuniform illumination. Statistical procedures from basic image

statistics such as mean, standard deviation, and variance to more complex

measurement such as principle component analysis can be used to extract features
from digital images. Once image features are identified, the next step is feature

classification. Numerical techniques such as neural networks and fuzzy inference

systems can be successfully applied to perform image feature classification.

2.4. CCD cameras

Machine vision systems utilize imaging cameras ranging from monochrome

cameras performing simple shape and size recognition tasks to common aperture
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multispectral cameras for detection of surface defects and diseases on meat, grains,

fruits, and vegetables.

An imaging camera receives light from the object surface and converts the light

into electrical signals using a charge-coupled device (CCD). CCDs are solid state,

silicon-based devices and are available in either linear or area array configurations.

Linear array CCD sensors are able to sense a line of pixels during a single exposure.

It is used to capture a full two-dimensional object image through motion of either the
object or the sensor along the direction perpendicular to the line of pixels. Area

arrays are able to capture a two dimensional image with a single exposure, but are

much more expensive to manufacture, especially in the larger array sizes. A light

sensitive CCD device converts an optical image into an array of electrical signals.

The electrical signals are proportional to the intensity of the light from the surface.

An A/D device converts the electrical signals into an 8- or 16-bit data, and the

digitized imaging data are then stored in the computer.

2.4.1. Monochrome imaging

Monochrome imaging requires a single-chip CCD. It is able to sense VIS and NIR

if it is so designed.

The resolution of a CCD image depends on how many pixels are in the CCD

arrays. Depending on the nature of applications, the camera resolution can range

from 480 to 1024 lines or even higher.

Various monochrome imaging techniques have been used for the determination of

agricultural product quality. For example, monochrome machine vision techniques
were used for automatic segmentation of the rib-eye area from a cut surface of

longissimus muscle and for the determination of the degree of marbling in the beef

rib-eye area (McDonald and Chen, 1991, 1992; Hwang et al., 1997). It was also used

for the detection of blemishes and bruises on apples (Davenel et al., 1988; Rehkugler

and Throop, 1989; Singh and Delwiche, 1994; Throop et al., 1995). Monochrome

machine vision technology was also used for detecting scars, cracks, and spreading

tips for asparagus (Rigney et al., 1996). Grading apples with on-line machine vision

has been attempted (Rehkugler and Throop, 1989; Throop et al., 1995). The major
challenges for on-line inspection are to produce quality images that provide clearly

identifiable features and to have both efficient hardware and software to process the

images fast enough for on-line implementation.

2.4.2. Color imaging

A single chip CCD camera can also be used for color imaging. This is done by

alternating the pixels in the CCD camera for red, green, and blue (RGB) color

acquisition in the area array CCD to simulate the colors seen by the human eye.

However, this technique, which is adequate for television or video viewing, may not
be suitable for complicated machine vision applications.

Color imaging can also be achieved by using three-chip CCD camera systems.

Each CCD in a three-chip camera receives RGB colors to produce near true color

images of the objects. This is accomplished by using a prism assembly with bandpass

filters and a dichroic coating on selected surfaces of the prisms that separate broad
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Fig. 1. Three-chip color imager.

Fig. 2. Multispectral imaging system with a rotating filter wheel.
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band light into RGB channels. The image acquired by each CCD is monochromatic

either for red, green, or blue (Fig. 1). Hence, a composition of the three-channel

signals provides a near true color image of the object.

There are many applications in color imaging for detection of agricultural product

quality. Throop et al. (1993) used a color difference between bruised and nonbruised

regions on ‘Golden Delicious’ apples. Daley et al. (1993, 1995) applied color imaging

techniques to on-line poultry quality grading. A color imaging system was used at
the Instrumentation and Sensing Laboratory (ISL) to classify livers and hearts of

wholesome and unwholesome chickens (Chao et al., 1999). The unwholesome

chickens had syndromes of airsacculitis, cadaver, and septicemia/toxemia. The

accuracy for separation of livers from wholesome and unwholesome chickens were

found to range from 87.5 to 92.5%, and hearts, from 92.5 to 97.5%.

2.4.3. Multispectral imaging

Multispectral imaging consists of a set of several images, each acquired at a

narrow band of wavelengths. The simplest method to obtain images at a discrete
spectral region is by positioning a bandpass filter (or interference filter) in front of a

monochrome camera lens. Multispectral images can be obtained by capturing a

series of spectral images by using either a liquid crystal tunable filter (LCTF) or an

acousto-optic tunable filter, or by sequentially changing filters in front of the

camera. Fig. 2 shows a multispectral imaging system with a rotating filter wheel

(Kim et al., 2001a) mounted with four filters for imaging fluorescence emission of

plant leaves.

A more advanced approach in multispectral imaging is the use of a common-
aperture multi-channel imaging camera. A three-channel common-aperture multi-

spectral imaging camera is similar to the three-chip color camera. The range of

spectral regions are accomplished by proper selections of dichroic coatings and

bandpass filters. With the same principle, a two-, four-, or six-channel common

aperture camera can also be built. The advantage of common aperture multispectral

imaging is that it can simultaneously acquire multiple spectral images. This can

facilitate high-speed acquisition and accurate processing, such as subtractions and

additions, of multiple images of different spectral bands.
Taylor and McCure (1989) used a multispectral imaging system, with a rotating

wheel holding six optical filters. They demonstrated that three wavelengths, 670, 800,

and 990 nm, could detect healthy and unhealthy leaf tissues. They also demonstrated

that it could map chlorophyll distribution over the leaf surface. Muir et al. (1982)

used spatial information at eight wavelengths to detect 12�/15 kinds of blemishes on

a potato. At ISL, Park and Chen (1994) used an intensified multispectral imaging

system to discriminate wholesome poultry carcasses from unwholesome carcasses.

Park and Chen (1996) reported the performance of a co-occurrence matrix textural
analysis method as a tool of multispectral image analysis for detecting unwholesome

poultry carcasses. Multispectral images were used to characterize chicken heart

images for disease detection (Chao et al., 2001). Multispectral fluorescence imaging

was shown to be useful in studying diffusion of herbicide within leaves, after they

were treated with the herbicide (Kim et al., 2001a).
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2.4.4. Hyperspectral imaging

In recent years, hyperspectral imaging has emerged as a powerful technique in

earth remote sensing and medical diagnosis. This technique combines the features of

imaging and spectroscopy to acquire both spatial and spectral information from an

object. The technique yields much more useful information than other imaging

techniques, because each pixel on the image surface possesses a spectral signature of

the object at that pixel.
Spectroscopic data analysis techniques can be used to extract chemical composi-

tion from each or an aggregate of pixels. Because of these combined features,

hyperspectral imaging can greatly enhance our capability to identify materials and

detect subtle and/or minor features in an object. Applications range from precision

agriculture applications, such as detection of plant stress or crop infestation, to

medical applications, and agricultural product quality and safety sensing.

Two general approaches have been used in the development of hyperspectral

imaging techniques. One of the approaches is to sequentially capture a series of
narrow-band spectral images to accomplish a three-dimensional image cube.

Another approach is a pushbroom method where a line of spatial information

with a full spectral range per spatial pixel is captured sequentially to complete a

volume of spatial-spectral data. The fact that CCD detectors have two-dimensional

arrays and a spectrograph allows simultaneous recording of a line of spatial and a

multiple of spectral information. The advantage of this type of system is that sample

sizes in one of the spatial directions (Fig. 3) are not limited by the size of CCD as

compared to the first approach that sequentially captures a series of narrow-band
spectral images.

Martinsen and Shaare (1998) applied hyperspectral imaging to measure soluble

solids distribution in kiwifruit and found the technique very promising. Mao and

Heitschmidt (1999) reported a hyperspectral imaging system with the capability of

both airborne and ground/laboratory data acquisitions. They used a LCTF, a CCD

video camera, a frame grabber, and a portable computer system. The spectral range

is from 450 to 750 nm with a 10 nm bandpass. The system is able to capture different

spectral images at up to 14 images per second.

3. Case studies

3.1. On-line poultry inspection by a multi-camera system

There is an urgent need to develop automated inspection systems that can operate

on-line in real-time (at least 140 birds per minute) in the poultry slaughter plant

environment. These systems should be able to accurately detect and identify
carcasses unfit for human consumption.

Based on an early study (Park et al., 1998) using industrial machine frames, a

transportable dual-camera system for separating wholesome and unwholesome

chicken carcasses on-line was assembled (Chao et al., 2000). The dual cameras were

equipped with filters with center wavelengths at 542 and 700 nm, respectively. A
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schematic of the dual-camera system is shown in Fig. 4. The description of its major

components is given in Chao et al. (2000), where a laboratory version of the system is

described. In the transportable system, two fiber-optic dual-line lights equipped with

AC-regulated 150 W quartz-halogen light bulbs were used to provide evenly

distributed illumination to the poultry carcasses. The dual-line lights were positioned

bilaterally at 458 angles to provide balanced area illumination to the poultry carcass.

For this machine vision inspection system, object-oriented programming para-

digms (Rumbaugh et al., 1991) were utilized to integrate the hardware components.

The image is reduced to a size of 256�/240 pixels and then the carcass is segmented

from the background using simple thresholding. A total of 15 horizontal layers (16

horizontal lines of pixels each) are generated from each segmented image, as shown

in Fig. 5. For each layer, a centroid is calculated from the binarized image. Based on

these centroids, each layer was divided into several square blocks (16�/16 pixels), for

a total of 107 blocks. The averaged intensity of each block is used as the input data

to neural network models. The constant number of blocks in each layer was

previously determined to delineate the main part of each carcass and omit the legs

and wings. For a very small chicken, the edge blocks could contain several

background pixels, passing chicken size information on to the neural net in the

form of lowered average intensity.

Fig. 3. Line scan of apples with a PGP assembly imager.
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A backpropagation neural network model for classification was done off-line from

images acquired on-line. These parameters are then incorporated into the on-line

classification section of the software. The feed-forward-back-propagation neural

network model has 107 input nodes, 10 nodes in one hidden layer, and 2 output

nodes. The output nodes’ target outputs are (0 1) or (1 0), depending on whether the

sample was identified wholesome or unwholesome by the veterinarian. For each of

the three data sets, model development method starts with splitting the data into two

sub-sets: training (50%) and validation (50%). Each sub-set contains equal numbers

of wholesome and unwholesome carcasses. The neural network models are trained

on the training sub-set. The validation sub-set is used to decide which network model

and how much training is optimal. Training is always stopped after 15 000 iterations.

Fig. 6 shows typical images for sampled poultry carcasses at two wavelengths.

Typical images of wholesome carcasses and three kinds of unwholesome carcasses

(septicemia, cadaver, and airsacculitis) are shown. The reflectance intensity of

wholesome carcasses was not sensitive to the wavelength filters. As shown in (g) and

(h), little difference existed in reflectance intensity between wavelengths at 500 and

Fig. 4. Schematic of transportable dual-camera inspection system: (1) camera w/540 nm filter, (2) camera

w/700 nm filter, (3) fiber optic dual-line illuminator, (4) industrial computer, (5) interface and camera

control box, (6) 12 V power supply to the dual-camera, (7) fiber optic light source, (8) battery backup

(UPS), (9) photoelectric proximity sensors, (10) magnetic proximity sensor, (11) camera enclosure.
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700 nm. However, the reflectance intensities for unwholesome carcass at 540 and 700

nm were significantly different from that of wholesome carcasses. For unwholesome

chicken carcasses, the reflectance with the filter of the 540 nm wavelength was darker

than the intensity with a 700 nm filter (a�/f). This shows that the unwholesome

Fig. 5. Real-time image processing from the MVIS. Centroid and mesh generation during image capture

for off-line training. (a) front at 540 nm, (b) front at 700 nm, (c) back at 540 nm, (d) back at 700 nm.

Table 1

Number of carcasses used for model development and on-line testing

Date collected Wholesome Unwholesome

Model development

9/16/99�/9/20/99 500 500

9/21/99�/9/22/99 150 150

9/27/99 50 50

Total 700 700

On-line testing

9/28/99�/9/30/99 5952 395

Total 5952 395
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Fig. 6. Real-time multi-spectral images for poultry carcass inspection.
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spectral images at the 700 nm wavelength were not the same as those at the 540 nm

wavelength. Thus, the combination of these two wavelengths enabled the differ-

entiation of wholesome carcasses from unwholesome carcasses.

The dual-camera system was installed between the evisceration station and

inspector station. A total of 1400 poultry carcasses (700 wholesome and 700

unwholesome) were measured for development of classification models. It was used

to test a total of 6347 poultry carcasses (5952 wholesome and 395 unwholesome) on-

line (Table 1). In each case, the 540 and 700 nm results were combined using an

Fig. 7. ISL hyperspectral imaging system for food safety study.

Table 2

Classification accuracy for on-line testing

Test on day(s) Predicted

Wholesome Unwholesome Accuracy (%)

9/28/99�/9/30/99 Actual Wholesome 5599 353 94.0

Unwholesome 50 345 87.3
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AND operation to give a single prediction. That is, a carcass is predicted wholesome

only if the data from both cameras result in wholesome prediction. Table 2 gives the

results of the on-line testing. Of a total of 5952 wholesome carcasses, 5599 carcasses

were predicted correctly (94%), and 87% of the 395 unwholesome carcasses were

correctly predicted.

3.2. Detection of apple diseases, defects, and contamination by hyperspectral imaging

system

Applications of hyperspectral imaging technology to inspection and grading of
food and agricultural products for quality and safety at ISL started in 1998. A

preliminary study on identifying normal and abnormal poultry carcasses using

hyperspectral imaging was conducted by Lu and Chen (1998). Since then, the ISL

hyperspectral imaging system was redesigned so that it can be used to evaluate

reflectance and fluorescence images (spectral range from 425 to 950 nm) of

agricultural products, with very high spatial and spectral resolutions (Kim et al.,

2000, 2001b).

Fig. 7 shows the schematic diagram and hardware components of the ISL
hyperspectral imaging system. The sensor module includes a back illuminated CCD

and a control unit (Pixel Vision, Inc., Tigard, Oregon) that interfaces with a

Pentium-based personal computer. The CCD has 512�/512 pixel elements with a 16-

bit dynamic data range and is thermo-electrically cooled.

A spectrograph (ImSpector-V9, Spectral Imaging Ltd., Oulu, Finland) coupled

with a C-mount lens is attached to the CCD camera head. The spectrograph consists

of a prism-grating-prism (PGP) construction that is a holographic transmission

Fig. 8. Comparison of reflectance spectra for Red Delicious apples.
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grating. This assembly disperses incoming light into a spectral and spatial matrix,

which then impinges onto the CCD.

Two independent light sources for the reflectance and fluorescence imaging are

incorporated into the system. Sample illumination for reflectance measurements is

provided by two 150 W halogen lamps powered by two regulated DC power

supplies. The light is collected and transmitted through two rectilinear fiber bundles,

which provide near uniform illumination of samples.
For fluorescence measurements, two UV-A fluorescent lamp assemblies are

arranged to provide near uniform excitation energy to the sample area. Low-pass

filters are placed in front of the lamp housing to prevent transmittance of radiation

greater than approximately 400 nm, therefore eliminating spectral contamination by

pseudo-fluorescence.

Following is an example of an application of hyperspectral reflectance images for

detection of contaminated Red Delicious apples. Because of the highly nonuniform

surface color of the Red Delicious apples, detection of contaminations on these

apples, among all cultivars of apples, presents a challenging task for machine vision

applications.
The contaminations studied at ISL included physical damages such as bruises, side

rot, scabs, and soil contamination. The normal or uncontaminated apple portions

included those of reddish and yellow-greenish colors.

Fig. 8 illustrates typical spectra extracted from the hyperspectral image data for

the uncontaminated and contaminated surfaces of the apples. In general, unconta-

Fig. 9. (a�/d) Simple image processing procedure on apples: (a) images at the chlorophyll absorption

band, (b) images after applying an asymmetric second difference, (c) mask images obtained after

morphological processing, and (d) defective, diseased, and contaminated parts of the images after applying

masking and thresholding.
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minated apple surfaces showed higher reflectance in the VIS (�/600 nm) and NIR

regions compared to the defective or contaminated surfaces, except for bruise spots,

which had higher reflectance. Areas with scabs exhibited the lowest reflectance.

There was a very distinct absorption feature in the red region of the spectrum with

maximum absorption centered at 680 nm. This absorption was due to the presence of

chlorophyll a molecules (Chappelle et al., 1992). The contaminated spots lacked the

chlorophyll a absorption features, except for bruised areas. Low reflectance
characteristics observed from approximately 450 to 550 nm region for uncontami-

nated apples were the manifestation of strong absorption by the constituent

pigments such as chlorophyll b and carotenoids.

Differentiation between contaminated and defective apples from uncontaminated

apples was achieved with multiple wavelength images. Due to the non-flat shape of

apples, great differences in reflectance measurements vary across the apples from the

centers to the edges. This variation masks the difference that might be seen for either

condition. Second difference techniques would allow better differentiation of the
contaminated and defective portions of apples. The algebraic expression for the

second central difference is given by the following equation:

S??(ln; g)�S(ln�g)�2S(ln)�S(ln�g) (1)

where S (ln) is the reflectance image at the center wavelength ln and S ??(ln, g ) is the

second difference image at the wavelength ln with a gap (g) in nm. The center

wavelength and the gap were chosen to provide the best contrast between surface

defects and uncontaminated portions of the apples. In general, when center spectral

Fig. 10. Ratio images of Red Delicious treated with thick cow manure patches on the left halves and

transparent manure spot on the right halves of apples. (a) Reflectance ratio image, R800/R750. (b).

Fluorescence ratio image, F680/F450.
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bands are associated with strong pigment absorption features, e.g. carotenoids and

chlorophyll a , the second difference images provide enhanced visual contrasts

between the contaminated and uncontaminated parts of apples as compared to a

single waveband image. Fig. 9a shows the use of an absorption feature prominent

only to uncontaminated apples, such as the chlorophyll absorption band in the red at

685 nm, as the center band for the second differences method.

To generalize the second difference method with a fixed gap, a modified second

difference method, with different gaps (asymmetric) for the lower and upper

wavelengths from the center wavelength, was proposed by Mehl et al. (2002):

S??(ln; g)�S(ln�g1)�2S(ln)�S(ln�g2) (2)

where S ??(ln, g ) is the asymmetric second difference image of S (ln) with gaps, g1 and

g2, where g1 is not equal to g2.
The chlorophyll absorption band centered at 685 nm with 2 longer wavelengths at

722 and 870 nm, respectively, was found to be very effective in differentiating the

contaminated spots from uncontaminated portions of apples. Fig. 9b shows

asymmetric second difference images with three bands centered at 685, 720, and

870 nm. Various white spots within the apples depict the defects and contamination

on apples. Note that stems were not depicted as defects but as being parts of the

uncontaminated apples.

Mask images created with a NIR band and the results of a simple masking and

thresholding are also shown in Fig. 9c and d, respectively. All the uncontaminated

apples showed no defects or contamination except the one apple positioned at the

upper-right corner in Fig. 9d. The white spots shown in Fig. 9d for the

uncontaminated apple image is believed to be an actual tiny bruised spot.

Other apple cultivars including Gala, Fuji, and Golden Delicious were also

investigated and similar results were obtained. The above three spectral bands can be

implemented in a three-channel common aperture imaging system for on-line

inspection of apple cultivars for diseases, defects, and soil contamination.

Hyperspectral imaging techniques to develop simple detection methods for fecal

contamination on apples were studied (Kim et al., 2000), with both reflectance and

fluorescence of fecal contaminated Red Delicious, Gala, Fuji, and Golden Delicious

apples. The samples were treated with thick patches of cow manure on the left halves

of apples and thin smears (transparent) on the right halves of apples.
Preliminary results showed that a simple ratio between two reflectance images at

750 and 800 nm bands followed by a simple threshold could differentiate thick

patches of manure from regions of uncontaminated surfaces (Fig. 10a). However, for

the detection of thin manure spots, multispectral reflectance imaging techniques were

not as successful. Further study showed that a simple image ratio of two fluorescence

bands at 680 and 450 nm (Fig. 10b) could easily differentiate uncontaminated

portions of apple surfaces from contaminated spots, regardless of apple skin color

and thickness of manure treatments.
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4. Summary

Machine vision technology has the potential to become very important to the

agricultural industry. The use of machine vision technology for land-based and

aerial-based remote sensing for natural resources assessments, precision farming,

postharvest product quality and safety detection, classification and sorting, and

process automation may become routine operations in the near future.
Advances in machine vision technology will make vision systems accurate, robust,

and low cost. A real-time operational requirement can be met with a high-speed

computer and a frame grabber. The image acquisition board receives imaging data

from a camera, performs some processing, and stores the image. It can communicate

with the host computer at a speed of 132 Mbytes/second over the PCI bus. These

speeds and the data transfer rate are fast enough to meet the real-time needs

generally encountered in agricultural applications.

For rapid prototyping of a machine vision system, artificial intelligence program-
ming can be incorporated into the system. Newer tools such as neural networks,

fuzzy logic, and expert systems can be applied. For example, Chao et al. (1999) used

a color imaging system to classify viscera of wholesome and unwholesome carcasses.

They developed a neuro-fuzzy software to enhance the robustness of the classifica-

tion of the color imaging system.

In order to fully apply machine vision technology, the vision systems for

agricultural applications will take full advantage of the fact that vegetation, foods,

and agricultural products are biological materials; therefore, the differences in the
characteristics of light absorption of the agricultural materials are very important. A

hyperspectral imaging technique combines the advantages of spectroscopy and

imaging. This technology should find many potential applications in the agricultural

industry.

When analyzing hyperspectral image data, the spectral characteristics at each

pixel and differences between pixels can be utilized. For example, with hyper-

spectral imaging of fruits, the specific absorption peaks at chlorophyll and

carotenoid bands can be used as a means for the determination of defects, damage,
or contamination on the surfaces of fruits. While hyperspectral imaging systems

provide important spectral information, they suffer from the incapacity for rapid

on-line acquisitions. A common aperture multispectral imaging system with a limited

number of wavebands can meet the needs of real-time acquisition and processing.

Hyperspectral imaging systems can be used to find optimal bands and develop

algorithms for many food commodities. With defined optimal bands, they can

be implemented in a common aperture multispectral imaging system for on-line or

real-time applications.
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